Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564252

RESUMEN

Currently, the identification of patient-specific therapies in cancer is mainly informed by personalized genomic analysis. In the setting of acute myeloid leukemia (AML), patient-drug treatment matching fails in a subset of patients harboring atypical internal tandem duplications (ITDs) in the tyrosine kinase domain of the FLT3 gene. To address this unmet medical need, here we develop a systems-based strategy that integrates multiparametric analysis of crucial signaling pathways, and patient-specific genomic and transcriptomic data with a prior knowledge signaling network using a Boolean-based formalism. By this approach, we derive personalized predictive models describing the signaling landscape of AML FLT3-ITD positive cell lines and patients. These models enable us to derive mechanistic insight into drug resistance mechanisms and suggest novel opportunities for combinatorial treatments. Interestingly, our analysis reveals that the JNK kinase pathway plays a crucial role in the tyrosine kinase inhibitor response of FLT3-ITD cells through cell cycle regulation. Finally, our work shows that patient-specific logic models have the potential to inform precision medicine approaches.


Asunto(s)
Leucemia Mieloide Aguda , Transducción de Señal , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Sistema de Señalización de MAP Quinasas , Línea Celular , Resistencia a Medicamentos , Tirosina Quinasa 3 Similar a fms/genética
2.
Gene ; 907: 148279, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38360126

RESUMEN

The identification of rare genetic variants associated to Systemic Lupus Erythematosus (SLE) could also help to understand the pathogenic mechanisms at the basis of the disease. In this study we have analyzed a cohort of 200 Italian SLE patients in order to explore the rare protein-coding variants in five genes (TNFAIP3, STAT4, IL10, TRAF3IP2, and HCP5) already investigated for commons variants found associated in our previous studies. Genomic DNA of 200 SLE patients was sequenced by whole exome sequencing. The identified variants were filtered by frequency and evaluated by in silico predictions. Allelic association analysis was performed with standard Fisher's exact test. Introducing a cutoff at MAF < 0.01, a total of 19 rare variants were identified. Seven of these variants were ultra-rare (MAF < 0.001) and six were absent in the GnomAD database. For TNFAIP3 gene, the variant c.A1939C was observed in 4 SLE patients and it is located in a region enriched in phosphorylation sites and affects the predict affinity of specific kinases. In TRAF3IP2 gene, we observed 5 different rare variants, including the novel variant c.G410A, located in the region that mediates interaction with TRAF6, and therefore a possible risk factor for SLE development. In STAT4 gene, we identified 6 different rare variants. Among these, three missense variants decrease the stability of this protein. Moreover, 3 novel rare variants were detected in 3 SLE patients. In particular, c.A767T variant was predicted as damaging by six prediction tools. Concluding, we have observed that even in genes whose common variability is associated with SLE susceptibility, it is possible to identify rare variants that could have a strong effect in the disease development and could therefore allow a better understanding of the functional domain involved.


Asunto(s)
Predisposición Genética a la Enfermedad , Lupus Eritematoso Sistémico , Humanos , Lupus Eritematoso Sistémico/genética , Alelos , ADN , Análisis de Secuencia de ADN , Polimorfismo de Nucleótido Simple
3.
Bone Rep ; 19: 101728, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38076483

RESUMEN

COL2A1 gene encodes the alpha-1 chain of type-II procollagen. Heterozygous pathogenic variants are associated with the broad clinical spectrum of genetic diseases known as type-II collagenopathies. We aimed to characterize the NM_001844.5:c.1330G>A;p.Gly444Ser variant detected in the COL2A1 gene through trio-based prenatal exome sequencing in a fetus presenting a severe skeletal phenotype at 31 Gestational Weeks and in his previously undisclosed mild-affected father. Functional studies on father's cutaneous fibroblasts, along with in silico protein modeling and in vitro chondrocytes differentiation, showed intracellular accumulation of collagen-II, its localization in external Golgi vesicles and nuclear morphological alterations. Extracellular matrix showed a disorganized fibronectin network. These results showed that p.Gly444Ser variant alters procollagen molecules processing and the assembly of mature type-II collagen fibrils, according to COL2A1-chain disorganization, displayed by protein modeling. Clinical assessment at 38 y.o., through a reverse-phenotyping approach, revealed limp gait, short and stocky appearance. X-Ray and MRI showed pelvis asymmetry with severe morpho-structural alterations of the femoral heads bilaterally, consistent with a mild form of type-II collagenopathy. This study shows how the fusion of genomics and clinical expertise can drive a diagnosis supported by cellular and bioinformatics studies to effectively establish variants pathogenicity.

4.
Cell Biosci ; 13(1): 207, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957701

RESUMEN

BACKGROUND: Paediatric-type diffuse High-Grade Gliomas (PDHGG) are highly heterogeneous tumours which include distinct cell sub-populations co-existing within the same tumour mass. We have previously shown that primary patient-derived and optical barcoded single-cell-derived clones function as interconnected networks. Here, we investigated the role of exosomes as a route for inter-clonal communication mediating PDHGG migration and invasion. RESULTS: A comprehensive characterisation of seven optical barcoded single-cell-derived clones obtained from two patient-derived cell lines was performed. These analyses highlighted extensive intra-tumour heterogeneity in terms of genetic and transcriptional profiles between clones as well as marked phenotypic differences including distinctive motility patterns. Live single-cell tracking analysis of 3D migration and invasion assays showed that the single-cell-derived clones display a higher speed and longer travelled distance when in co-culture compared to mono-culture conditions. To determine the role of exosomes in PDHGG inter-clonal cross-talks, we isolated exosomes released by different clones and characterised them in terms of marker expression, size and concentration. We demonstrated that exosomes are actively internalized by the cells and that the inhibition of their biogenesis, using the phospholipase inhibitor GW4689, significantly reduced the cell motility in mono-culture and more prominently when the cells from the clones were in co-culture. Analysis of the exosomal miRNAs, performed with a miRNome PCR panel, identified clone-specific miRNAs and a set of miRNA target genes involved in the regulation of cell motility/invasion/migration. These genes were found differentially expressed in co-culture versus mono-culture conditions and their expression levels were significantly modulated upon inhibition of exosome biogenesis. CONCLUSIONS: In conclusion, our study highlights for the first time a key role for exosomes in the inter-clonal communication in PDHGG and suggests that interfering with the exosome biogenesis pathway may be a valuable strategy to inhibit cell motility and dissemination for these specific diseases.

5.
Comput Struct Biotechnol J ; 21: 4706-4716, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841333

RESUMEN

In recent years, research on long non-coding RNAs (lncRNAs) has gained considerable attention due to the increasing number of newly identified transcripts. Several characteristics make their functional evaluation challenging, which called for the urgent need to combine molecular biology with other disciplines, including bioinformatics. Indeed, the recent development of computational pipelines and resources has greatly facilitated both the discovery and the mechanisms of action of lncRNAs. In this review, we present a curated collection of the most recent computational resources, which have been categorized into distinct groups: databases and annotation, identification and classification, interaction prediction, and structure prediction. As the repertoire of lncRNAs and their analysis tools continues to expand over the years, standardizing the computational pipelines and improving the existing annotation of lncRNAs will be crucial to facilitate functional genomics studies.

6.
Plant Foods Hum Nutr ; 78(2): 399-406, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37256506

RESUMEN

Literature has proposed the existence of a cross kingdom regulation (CRK) between human and plants. In this context, microRNAs present in edible plants would be acquired through diet by the consumer's organism and transported via bloodstream to tissues, where they would modulate gene expression. However, the validity of this phenomenon is strongly debated; indeed, some scholars have discussed both the methodologies and the results obtained in previous works. To date, only one study has performed a bioinformatics analysis on small RNA-sequencing data for checking the presence of plant miRNAs (pmiRNAs) in human plasma. For that investigation, the lack of reliable controls, which led to the misidentification of human RNAs as pmiRNAs, has been deeply criticized. Thus, in the present contribution, we aim to demonstrate the existence of pmiRNAs in human blood, adopting a bioinformatics approach characterized by more stringent conditions and filtering. The information obtained from 380 experiments produced in 5 different next generation sequencing (NGS) projects was examined, revealing the presence of 350 circulating pmiRNAs across the analysed data set. Although one of the NGS projects shows results likely to be attributed to sample contamination, the others appear to provide reliable support for the acquisition of pmiRNAs through diet. To infer the potential biological activity of the identified pmiRNAs, we predicted their putative human mRNA targets, finding with great surprise that they appear to be mainly involved in neurogenesis and nervous system development. Unfortunately, no consensus was identified within the sequences of detected pmiRNAs, in order to justify their stability or capability to be preserved in human plasma. We believe that the issue regarding CKR still needs further clarifications, even if the present findings would offer a solid support that this hypothesis is not impossible.


Asunto(s)
MicroARNs , Humanos , MicroARNs/genética , Dieta , Plantas Comestibles/genética , Biología Computacional , ARN de Planta/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Regulación de la Expresión Génica de las Plantas
7.
Methods Mol Biol ; 2449: 187-196, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35507263

RESUMEN

The prediction of the cancer cell lines sensitivity to a specific treatment is one of the current challenges in precision medicine. With omics and pharmacogenomics data being available for over 1000 cancer cell lines, several machine learning and deep learning algorithms have been proposed for drug sensitivity prediction. However, deciding which omics data to use and which computational methods can efficiently incorporate data from different sources is the challenge which several research groups are working on. In this review, we summarize recent advances in the representative computational methods that have been developed in the last 2 years on three public datasets: COSMIC, CCLE, NCI-60. These methods aim to improve the prediction of the cancer cell lines sensitivity to a given treatment by incorporating drug's chemical information in the input or using a priori feature selection. Finally, we discuss the latest published method which aims to improve the prediction of clinical drug response of real patients starting from cancer cell line molecular profiles.


Asunto(s)
Fenómenos Biológicos , Medicina de Precisión , Algoritmos , Línea Celular Tumoral , Humanos , Aprendizaje Automático , Farmacogenética
8.
Noncoding RNA Res ; 7(2): 98-105, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35387279

RESUMEN

Recent research provides insight into the ability of miRNA to regulate various pathways in several cancer types. Despite their involvement in the regulation of the mRNA via targeting the 3'UTR, there are relatively few studies examining the changes in these regulatory mechanisms specific to single cancer types or shared between different cancer types. We analyzed samples where both miRNA and mRNA expression had been measured and performed a thorough correlation analysis on 7494 experimentally validated human miRNA-mRNA target-gene pairs in both healthy and tumoral samples. We show how more than 90% of these miRNA-mRNA interactions show a loss of regulation in the tumoral samples compared with their healthy counterparts. As expected, we found shared miRNA-mRNA dysregulated pairs among different tumors of the same tissue. However, anatomically different cancers also share multiple dysregulated interactions, suggesting that some cancer-related mechanisms are not tumor-specific. 2865 unique miRNA-mRNA pairs were identified across 13 cancer types, ≈ 40% of these pairs showed a loss of correlation in the tumoral samples in at least 2 out of the 13 analyzed cancers. Specifically, miR-200 family, miR-155 and miR-1 were identified, based on the computational analysis described below, as the miRNAs that potentially lose the highest number of interactions across different samples (only literature-based interactions were used for this analysis). Moreover, the miR-34a/ALDH2 and miR-9/MTHFD2 pairs show a switch in their correlation between healthy and tumor kidney samples suggesting a possible change in the regulation exerted by the miRNAs. Interestingly, the expression of these mRNAs is also associated with the overall survival. The disruption of miRNA regulation on its target, therefore, suggests the possible involvement of these pairs in cell malignant functions. The analysis reported here shows how the regulation of miRNA-mRNA interactions strongly differs between healthy and tumoral cells, based on the strong correlation variation between miRNA and its target that we obtained by analyzing the expression data of healthy and tumor tissue in highly reliable miRNA-target pairs. Finally, a go term enrichment analysis shows that the critical pairs identified are involved in cellular adhesion, proliferation, and migration.

9.
Nucleic Acids Res ; 49(W1): W67-W71, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34038531

RESUMEN

The interaction between RNA and RNA-binding proteins (RBPs) has a key role in the regulation of gene expression, in RNA stability, and in many other biological processes. RBPs accomplish these functions by binding target RNA molecules through specific sequence and structure motifs. The identification of these binding motifs is therefore fundamental to improve our knowledge of the cellular processes and how they are regulated. Here, we present BRIO (BEAM RNA Interaction mOtifs), a new web server designed for the identification of sequence and structure RNA-binding motifs in one or more RNA molecules of interest. BRIO enables the user to scan over 2508 sequence motifs and 2296 secondary structure motifs identified in Homo sapiens and Mus musculus, in three different types of experiments (PAR-CLIP, eCLIP, HITS). The motifs are associated with the binding of 186 RBPs and 69 protein domains. The web server is freely available at http://brio.bio.uniroma2.it.


Asunto(s)
Proteínas de Unión al ARN/metabolismo , ARN/química , Programas Informáticos , Animales , Secuencia de Bases , Línea Celular , Humanos , Internet , Ratones , Motivos de Nucleótidos , ARN/metabolismo , ARN Nuclear Pequeño/metabolismo , ARN Viral/metabolismo , Análisis de Secuencia de ARN
10.
Cell Death Dis ; 12(4): 310, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33762578

RESUMEN

SARS-CoV-2 is responsible for the ongoing world-wide pandemic which has already taken more than two million lives. Effective treatments are urgently needed. The enzymatic activity of the HECT-E3 ligase family members has been implicated in the cell egression phase of deadly RNA viruses such as Ebola through direct interaction of its VP40 Protein. Here we report that HECT-E3 ligase family members such as NEDD4 and WWP1 interact with and ubiquitylate the SARS-CoV-2 Spike protein. Furthermore, we find that HECT family members are overexpressed in primary samples derived from COVID-19 infected patients and COVID-19 mouse models. Importantly, rare germline activating variants in the NEDD4 and WWP1 genes are associated with severe COVID-19 cases. Critically, I3C, a natural NEDD4 and WWP1 inhibitor from Brassicaceae, displays potent antiviral effects and inhibits viral egression. In conclusion, we identify the HECT family members of E3 ligases as likely novel biomarkers for COVID-19, as well as new potential targets of therapeutic strategy easily testable in clinical trials in view of the established well-tolerated nature of the Brassicaceae natural compounds.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/enzimología , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo , Adulto , Anciano , Animales , Antivirales/farmacología , COVID-19/genética , COVID-19/metabolismo , Chlorocebus aethiops , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Femenino , Humanos , Indoles/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Ubiquitina-Proteína Ligasas Nedd4/genética , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Células Vero
11.
Sci Rep ; 9(1): 15222, 2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31645597

RESUMEN

Recent advances in pharmacogenomics have generated a wealth of data of different types whose analysis have helped in the identification of signatures of different cellular sensitivity/resistance responses to hundreds of chemical compounds. Among the different data types, gene expression has proven to be the more successful for the inference of drug response in cancer cell lines. Although effective, the whole transcriptome can introduce noise in the predictive models, since specific mechanisms are required for different drugs and these realistically involve only part of the proteins encoded in the genome. We analyzed the pharmacogenomics data of 961 cell lines tested with 265 anti-cancer drugs and developed different machine learning approaches for dissecting the genome systematically and predict drug responses using both drug-unspecific and drug-specific genes. These methodologies reach better response predictions for the vast majority of the screened drugs using tens to few hundreds genes specific to each drug instead of the whole genome, thus allowing a better understanding and interpretation of drug-specific response mechanisms which are not necessarily restricted to the drug known targets.


Asunto(s)
Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Genoma Humano/efectos de los fármacos , Humanos , Aprendizaje Automático , Modelos Biológicos , Farmacogenética , Transcriptoma/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA